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the Office of Naval Research, N00014-67-C-0218 (formerly
N00014-66~-C-0045), ARPA Order No. 876, ONR contract
authority NR 356-484/4-13-66, entitled "Development of
High Performance Composites."

The prime contractor is Monsanto Research Corporation.
The Program Manager is Dr. Rolf Buchdahl. (Phone: Area
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30 April 1971.



4th-ORDER TENSOR INVARIANTS AND GEOMETRIC REPRESENTATION

Edward M. Wu*

ABSTRACT

First and second order invariants of 4th-order tensor are
derived. Geometric representations analogous 1o Mohr's circle
are presented to aid the visualization and operations of 4th-
order tensors such as transformation, determination of principzal
direction and optimization procedures. Possible applications of

the invariants are suggested.

*pgsistant Professor, Materials Research Laboratory, Mechanical
and Aerospace Engineering, Washington University, St. Louis,

Missouri.



Introduction

Many physical properties of composites and crystals are
functions of material orientations. Such properties can be
characterized by the appropriate constitutive functions. In
order to insure the invariancy with respect to coordinate
transformations, these functions are customarily expressed in
tensorial forms. Additional groundwork is required in practical
engineering application of such constitutive func.ions. Material
coﬁstants must be measured for design computations, and analytical
techniques must be explored for operational efficiency. Both
experimental techniques and operational procedures are well
established for physical properties which are scalars, vectors
and second order tensors. For example, the measurement of strain
tensor, as well as its analysis, visualization and transformation
by the Mohr's Circle are well known. Howaver, comparable
operations for 4th-order tensors have not been fully explored. In
the advent of composites as anisotropic engineering materials,
the analysis and operation of 4th-order tensors becomes a
practical necessity. Several familiar examples of technical 4th-
order tensors are: elastic compliance, electrostriction, 2nd-order
term of non-linear thermal expansion and environmental swelling.
There remain many other important directional dependent physical
properties such as strength and certain transport phenomena whose
tensorial characteristics have yet to be adequately verified
experimentally. In order to facilitate the analysis, measurement
and operation of such physical properties, we derive the invariants

of a 4th-order tensor and suggest a geometric interpretation.



Invariants of 4th-Order Tensor

Tensor representation of physical properties which are
directionally dependent for engineering application is customarily
in Cartesian coordinates. For this reason the derivation of
invariants of a 4th-order Cartesian tensor is discussed. To avoid
distinction between pseudo-invariants and invariants, only right-
handed Cartesian coordinates are used. The invariants derived
are for rotation about the X4 axis. Companion invarinats for
other axes of rotation can be derived through simple permutation
of the indicies. At different stages of the derivation, the
symmetry conditions of the 4th-order tensor are used to simplify
the algebra. Appropriate modifications which are cumbersome but
straightforward must be made for skew-symmetric tensors.

We consider . 4th-order symmetric, Cartesian tensor Sijkl and
note that from tensor algebra that its scalar contractions are
invariant to orthogonal coordinate transformations. We shall seek
these scalar contractions and find the number of independent
invariants.

A 4th-order tensor Sijkl can be contracted through combina-
tions of the substitution tensor Gij and the permutation tensor

€.., which are defined as:
ijk .

LTI
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s = 100
ij 010
001 (1)

and _ |+ 1 for even permutation of ijk
ijk - 1 for odd permutation of ijk

0 for no permutation
The 2nd-order tensor components of the 4th-order tensor can be

obtained by contraction, they are:

815 Sisk1 ¥ Pxa (2)

§ (3)

]
ik Sijk1 * P35

Equations (2) and (3) are the only distinct components because
of symmetry, i.e.,
Sisk1 = Sijik

(4)
Si4k1 = Sk1ij

The 3rd-order components of the 4th-order tensor are:

Q . (5)

€mik Sijk1 = mj1

I t
®mij Sijk1 * %mk1 (6)
Again, from symmetry conditions Eq. (4), Egs. (5 and 6) are the
only distinct components. Furthermore, it can be readily shown

- L3 ' =
from the properties of the permutation tensor eijk that Q mk1 0.

The 2nd-order components of Qmjl then takes the form:

®nj1 Qi1 = ®nj1 Emik Sijkl " Thm (7)

t = =t =
€kl 2 mk1™ nkl °mij Sijkl - Tom = O (8)



First and Second order invariants can now be derived for those
- t -
2nd-order tensor components (Dkl’ D 51° Tnm \of the 4th-order

tensor sijkl'

The first order invariants are:

%1 Pk1 = %k1 %i5 Sisk1 T T (9)
] = = 7

841 P31 = 951 Six Sigk1 F 41 (101

6nm Tnm = 6nm Enjl Cmik Sijkl = -(1/2) I2 (12

Expanding Eq. (9) we can express the first order invariants of

S. in terms of its components. In 2-space, i.e., for i,j,kp-..

ijkl
1,2, they are:

I, = S1111 * Sa222 * 251122 (12)
' =

I) = Sy111 * Sa222 * 251212 (13)

1, =451, *+ 45,51, (14)

It is evident from Eq. (12),(13), and (14) that only two I's are
independent. This is consistent with the induction that there
are two first order invariants in 2-space for a 4th-order tensor.
\'e arbitrarily assign Il and I2 to be the first order invariants
[1]

to be consistent with underived definitions given by Hearmon

Also, to be consistent with the definition in Ref. [l], Egs.

(11 and 14) have been multiplied by-2.
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The second order invariants which are hitherto not known
can be arrived at in similar manners. By taking, what is in

effect, che dot products of the cross products of the vector

J

~ . t
components of the 2nd-order tensor components Dkl’ D'l’ Tnm)
of the 4th-order tensor (sijkl)’ the following 2nd-order

invariants can be arrived at.

wl = qu Epik qul Tij Tkl = (al - 2a2 + a4) —(2 ag - a3)= 0 (15)

Y2 = %pq ®pik ©qi1 Pij Pk1 T %1 7 % (16)
by = qu €pik €qjl Dij Dﬁl = 0, - a, . (17)
¥4 = Spq Spik q31 Pij Pk1 T %2 T % (18)
¥s = %pq ®pik %qi1 Pij Tk1 T 2(“6 - “a) (19)
Y6 = Spq ®pik fqi1 Pij Tk1 = 2(“3 3 3‘7) (20)

wi can be expressed in terms of sijkl by using Egs. (2,3 and 7).

For example:

S (15")

eimg Ejnh smngh €ksu f1tv “stuv

¥1 = Spq pik qj1

Y2 = S5q pik g3l °mn Smnij Suv Suvkl (16')

For conciseness, the remaining of wi are not expanded. The ay

expressed in terms of components of Sijkl in 2-space are:
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S, .
11))

1i13]

5iyk1

$1413

Si4k1

S{1x2

Siki1

iijk

5
“kkil

Sk 1ki

Sik41

Sk1k1

Siyk1

k1

S k31

5191k

b
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S1111
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1111

1111
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+
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45111252212

+

S1111 S1212 * S111151172

4

2

4

4

4

2

2

+

2
Si151122 * 25111152222 457122 T 45112252002t S2a00

+ + + 4

S111151122 * 28111152202 * 25111151212t 45112251012

2

i 52222

+

8 o]
25112252222 * 25552551212

2

2
51112

+ 4 53222

+ +

2 2
$11225%1012 * 4512220 * 201010

+ 52

2
$111151212 * 2511115222 * 451212 * 45121252222 * 52202

2

2 2 2 2
51112

* 251792 * 451212 * 455527 * S22

2 2

* 25102 * 2870,

2 2
S111151122 * 45701251112 * 252212

. 2
* 25115257020 * 52222

2 2
+ 28 2s1222

§ 1112

+ +

5111151212 45111252212

2 2
* 251512 * S5202

25151257222

+ 2 2

S1112 %2

5112251212

S + 2

£ 2 5121252222 * 52222

2
51222 * 5112252222 *

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28,




It can be shown that both vy and a; are invariant to coordinate
transformations. Just as in the first order scalar contractions,
not all of the 2nd-order scalar contractions, wi or a,, are
independent. Gauss-Jordan reduction revealed that the system of

equations Eq. (21) to (28) is of defect three. The three residual

equations are:

al = oy - 2a6 + 2a8 =90 (29)
Uy = Oy + 2a7 - 2a8 =0 (30)
= (31)

In addition, there exist three relations between o's and

the first invariants 11,12 as can be shown from Egs. (12),(14),(21),

(23), (24) and (25).

2 _

I = 0; (32)
Ig = 8((15 = 03) (33)
(Il +(1/2)Iz)2 =0y (34)

Equations (21) through (34) indicate that out of the eight a's
only two a's are independent. This is again consistent with the
mathematical induction that there are two 2nd-order invariants

for a 4th-order tensor in 2-space. Any two o's can be arbitrarily
assigned as 2nd-order invariants. We chuse a, and o, and define

the following combinations as 2nd-crder invariants.
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-8 -
II, = 2a, - (Il + (1/2)12)2 (35)
2
11, = 8(a3 - a7)+ (Il + Iz) (36)

We will show in the following section that these particular
combinations lend themselves to a convenient geometric inter-
pretation akin to the Mohr's circle for 2nd-order tensors.
Summarizing, we have derived 1lst and 2nd-order scalar contractions
for a 4th-order tensor. We also show that thege are two independent
lst-order invariants and two independent 2nd-order invariants for

a 4th-order tensor in 2-space. They can be expressed in terms

of the components of the 4th-order tensor components as:

I) = S51111 * S2222 * 2513122 (37)
== <+

I, =7S1122 T 457512 (38)

II, = (s -8 2, 4fs + S 2 ' (39)
1 1111 ~ S2222 ( 1112 * S2212

2
11, = (51111 + 83222 7 257922 - 4S1212‘ + 16(8);;, - S2212)2 (40)

In contracted notation*,the equivalent expressions are:

I =85, + 8y, + 2s,, (37")
I, =-4s12 * 566 (38')
¢ (391)

_ ) 2
L = (511 Szz) * (516 * 526)

) ) ) 2 3 2
2 = (511 * 82 ~ 25y 566) * 4 (516 st)

II (4°")

*The contracted notation follows the ccmmon practice of representing a
4-th order tensor with two indexes where S;;31;% S11, S1122 = S12,
251112 = S16+ 252212 = Syg¢ 451212 = Sgg- For more detail see Ref.[1].
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Geometric Interpretation of 4th-Order Tensor Invariants

Because of the large number of components involved, the
geometric interpretation of tensors of order higher than two is
a formidable task. Even in the plane case, the geometric
representation for a 2nd-order tensor is equivalent to represent
in two dimensions a system of three quadratic trigonometric
functions. Mohr's circle provides such a representation. It
contributed to better visualization of a 2nd-order tensor and
provided greater operational convenience for engineering problems
in the analysis of stress and strain as well as for problems in
rigid body dynamics. Similarly, the represencation of a 4th-order
tensor is equivalent to representing a system of 4th-order
trigonometric functions. A geome*ric representation similar to
that of the Mohr's circle has been suggested by P. Mast [2].
Utilizing the invariants derived in the previous section Egs. (37),
(38),(39) and (40), this can be generalized to geometrically
represent the transformation of a d4th-order tensor from any
arbitrary non-principal direction.

From the definition of tensors, for rotation about the X4 axis,
the components of a 4th-order tensor Sijkl at an arbitrary
orientation 9 with respect to a material coordinate* can be
transformed to the components S!'kl at another orientation 9'

ij
through the relation [1]:

*Without loss of generality, we may consider the material
coordinate coincides with the principal direction.



j s! 1 r m ’m,rJ
S -
i
- 8 22 4
51122 mn m +n
' 3 2(m3n-mn )
' -
281112‘ 2m~n
' = 4 2 2
82222, n 2m~n
' _ 3 3_3
282212' 2mn 2(mn~=m~n)
h 22 _qrrenad)
481212 4m“n 8m™n
-

- 10 -
2m3n n4 . m:?n2 1
mn3-m3n m2n2 m3n-mn3 -m2n2
m4-3m2n2 2mn3 3m n2-n4 In3n—mn3
-2mn3 m4 -2m™n mﬂn2
3m2n2—n4 2m3n m4—3m2n2 mn3—m3n
4 (mn3-m3n’ 4m%n? 4(m3n-mn3) (m2~n2)iJ

A
where m and n are directional cosine and sine.

The graphical representation of this 4th-ord:r tensor transformation

can be observed by rewriting Eq.

as described by Tsai and Pagano (3] in the following form:

S1111
[}
51122

L}
251112

]
$2222

2

S3212

t‘sizlgj

where

-U

cos 2¢

sin 24

cos 47

sin 4¢

41 in multiple angle represcntation

(42)

T L i

PR

S T




= 11 =

=86 -0

U, = 1/8(311 + 12)

2 ™ 1/2( S2222 - S1111)

= 1/8( 481515 * 281155 = Sy3qy - S2222) (43)
U, = 1/8 (;2 - 11)

s = 18 (12 + Il)

6 (51112 * S2212)

7 = 1/2 (51112 - S2212)

c
|

c
I

(=]
|

(=]
]

(=
"

The geometric interpretation of this tensor transformation
can be recognized after somc rearrangements. Take the first of

Eq. (42) for example,

Silll = Ul - U, cos 2¢ + Ue sin 2¢ - Uy cos 4¢ + u, sin 4¢ (44)

Consider the terms containing 2¢ and define:

sin 2¢ : (45)

1 -
2 U2 cos 2¢ U6
If u, and Ue are the sides of a right-angled triangle with a

hypothenuse Rl' as shown in Fig. 1, then

2 Rl cos 260

a
]

U = Rl sin 206 (4€)

R, = U2 cos 20 + U6 sin 26

Substitute Eq. (46) into (45), we obtain



« 12 =

1 =
U (U2 cos 20 + UG

2

a '
R1 cos 260

Similarly, we can express terms containing 4¢ as:

Us

where

R, =1U

2 cos 4¢ + U.7 sin 4¢

3

sin 26)cos (26 + 2¢) (47)

cos 4¢ - U, sin 4¢ = R, cos 40" (48)

Making use of Eq. (47) and (48), Eq. (44) simplifies into the form:

t = =
51111 = U1 - R} 2

R, cos 206t - R, cos 46! (49)

As shown in Fig. 2, Eq. (49) can be represented by the horizontal

projected distance between the radius vectors of two circles
separated by distance Uy between centersand with radii R,y and R,
respectively. The radius vector for Ry rotates at 26' and that
for R, rotates at 46'. Both the original $1111 at 6 and the
transformed Silll at 0' are shown in Fig. 2. It can also be

easily shown that R1 and R, are the roots of the 2nd invariants

[Eq. (39), (40)1].

e e e
R, = (U§ % U?’ )1/2 wr 18 112)1/2

Carrying out similar rearrangements, Eq. (42) can be written as:

(50)

A e e e o e - i
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SI
1111
S!
1122
51112
S'
2222

53212

L§i212

The components of the 4th-order tensor at orientation 6 (which is

equivalent to ¢ = 0 in Eq. 51) can be represented geometrically

in Figqg.

3.

0

- -

cos 26!

sin 26"

cos 48'

sin 46'°

In the construction of this representation, it is

assumed that:

U

2

>0 or S

2222

>

S1111

Ugy2 Gor (451212 + 28115, > (51111 ¥ S2222)

Ug > 0 or 4555y, > (51111 t Sy000 ¢ 6S1122)

In addition, just as in the Mohr's circle, certain sign

conventions must be followed.

A positive rotation ¢ (counter-

clockwise) in the material plane is equivalent to a positive

rotation of 29 (counter-~clockwise) of radius vector R1 and a

positive rotation 4¢ (also counter-clockwise) of the radius

vector R2.

The signs of the components Sijkl are determined by

the direction of the measurements.

to right and those from bottom to top are positive.

All measurements from left

In order

(51)

(52)
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to avoid confusion, the directions of measurements as indicated
by the arrows in Fig. 3 must be followed. For example, 51112

is obtained by the vertical distance from the tail of the
diameter vector of circle R, to the head of diameter vector of
circle(l/Z)Rl. Note that when 6 > /2, the measurement direction

for S is reversed and 51112 takes on negative values.

1112
The above geometric representation can be constructed from
any given set of sijkl' The orientation of the principal
direction need not be known. The invariants Il' Iz, IIl’ II2

can be computed from Egqs. (37,38,39 and 40). Fror Egs.(43 and 50),
Ul’ Ugr US’ R, and R2 can be computed. These values can be usei
to locate the centers of the circles, reference lines A and B

and the circles Rl,(l/Z)Rl,and R, as shown in Fig. 3. Either
81112 or 81212 can then be used to determine the orientation of
the radius vector Rz. Thus the principal direction 6 can be
directly determined, which in turn determines the radius vector Rl.
The components of the 4th-order tensor sijkl at orientation ¢

from Sijkl can be determined by rotating the R, by 2¢ and R, by 4¢
and the appropriate distances measured according to the suggested
sign conventions.

The representation presented herein is but one of many
available. It serves, primarily, to illustrate the essential
features which exist in the geometrical representation of a
4th-order tensor. Detail variations will depend on personal
preferences and specific application. For example, if the

transformation of Sijkl in contracted notation is desired, the

third, fifth and sixth equations of Eq. (51) must be multiplied by
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2, 2 and 4 respectively. It follows that in the geometric
representation, the circle (1/2)R1 can be removed and concentric
circles 2R, and 4R, added to the cricle Ry In addition, the
location of reference lines A and B as well as the relative
positions of the circles are arbitrary. If they are changed

from the configuration presented here, appropriate sign convention
has to be re-established.

It is also worthwhile to note the analogy between the Mohr's
circle transformation for 2nd-order tensors and the representation
for 4th-order tensors. In Mohr's circle, the first order
invariant determines the location of the center of the circle,
and the 2nd-order invariant determines the magnitude of the circle.
In the 4th-order representation, the first order invariants
determine the location of the centers of the circles and the
reference lines A and B while the 2nd-order invariants determine
the magnitudes of the circles. For a rotation ¢ in the physical
plane, the second order transformation is represented by a
rotation 2¢ in the Mohr's circle while the 4th-order transformation
18 represented by rotations of 2¢ and 4¢ of the circles.

In practical application, this geometric representation is

used to graphically transform the compliance matrix S, of

ijki
fiberglass reinforced composites. It was found that upon the
computation of the invariants and the construction of the circles,
any Sijkl can be rapidly det~rmined by laying out two vectors

R. and R. at the desired orientations 26 and 46. From constructions

1l 2
on 8"x 10"graph papers*,the accuracy attained is within 1% of

the computer computed results using Eq. (41).

*Graphical construction can be simplified by normalizing Eq.(51) by
Ry or Ry or U,
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In cases where principal direction is to be found, it can be
determined graphically by the intercept of Si212 to the circle

R,, and this is found to be much faster than analytically setting

2

sl

1112 °F 85212 to zero in Eq. (41) and solve for 6.

Applications

We have derived the first and second order invariants for
4th-order tensors and have shown that in 2-space there exists
two independent first order invariants and two independent
2nd-order invariants. By expressing the 4th-order tensor
transformation in multiple angle representation and making use
of the invariants, a geometric representation analogous to the
Mohr's circle can be constructed.

The invariants and graphical representation presented here
are applicable to 4th-order tensors encountered in the physics
and mechanics of solids and fluids. They are also applicabl- for
certain engineering constants for composite materials which
transform in the form of Eq. (l1). Thus, similar invariants and
geometric representations can be derived for the A, ﬁ, and D
matrix for laminate plates [4]. Familiar applications of the
invariants of 2nd-order tensnrs and Mohr's circle suggest some
natural applications of their counterparts for 4th-order tensors.
For example, the principal values and principal directions of the
stiffness tensor for crystals and composite materials can be
conveniently obtained from the invariants and the graphical

representation. In view of the contribution of stress invariants
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+o the formulation of yield criterion for isotropic materials, the

4th-order tensor invariants may be useful in the characterization
of the flow and fracture of anisotropic solids. Finally, the
newly derived second order invariants may be considered as
additional intrinsic material properties and may be used to
simplify optimization of the physical properties of laminated

composites as suggested in Ref. [3].
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Aggendix

Invariants of 4th-order tensor in 3-space:

The derivation cf the inveriants of a 4th-order tensor in
3-space for a rotation of voordinate around the X3-axis is
similar to that in 2-space. Because X3 = X3 in the transformation,
the components of sijkl which contain the 3 component transform

as tensors of orders less than four; i.e., the components
1123, S1113, S2223

82213' 82312' 81312 Transforms as 3rd-order tensor (Al)
1313’ 52323 51323

Transform as 2nd-order tensor (A2)
$11337 52233 53312
83323, 83313 Transform as lst—-order tensor (A3)

Thus, in addition to the invariants derived (Eq. 37 to 40), there
exist invariants associated with the tensor components in Egq. (Al to A3).
For the components in Eq. (Al), it can be easily shown that there

exists no lst-order invarjants. The 2nd-order invariants are:

2 2

Iy = (31123 " S2223 ¢t zs1312) * (31113 " Sz213 " 2S2312) (ad4)

11, = (3% +8 - 28 2 4+ (s + 38 - 28 2 (as)
4 “1123 ¥ 82223 1312 1113 2213 2312

II. = (38 + 8 + 28 2 , (s + 35 + 28 2 (a6)
5 1113 * S2213 2312 ( 1123 2223 1312)

11, = (s -5 + 28 2 4 (s -5 - 25 2 (A7)
6 1113 ~ S2213 2312 1123 ~ 52223 1312

For the cowponents in Eq. (A2), the first and second order invariants
can be obtained from well known results of 2nd-order tensor

transformation. The first order invariants are
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13 = 452323 + 451313 (A8)
Iy = Sy33 * 51133 (A9)
The second order invariants are
II. = (s - s 2 4 (28 2 (A10)
7 1133 ~ 2233 $3312

_ _ 2 . 2 :

IIg = (52323 S1313\) + (4“2312) (A11)

Finally, for the components in Eq. (A3), no first order invariants
exist and the second order invariant is the magnitude of the
vector

Iy = (53323)2 * (53313)2 (A12)
Recapitulating, for a 4th-order tensor Sijkl in 3-space in a
rotation around the x3—axis, the lst-order invariants are: Il(Eq.37),
IZ(Eq.38), I3(Eq.A8), I4(Eq.A9),
and the 2nd order invariants are IIl(Eq.38), IIZ(Eq.39), II3(Eq.A4),
II,(Eq.AS), II4(Eq.A6), II,(EqQ.A7), II,(Eq.Al0), IIS(Eq.All),‘
IIg(Eq.AIZ).

The geometric representations of the transformation of the
components in Eq. (A2) and Eq. (A3) are that of the conventional
Mohr's circle and that of the vector circle respectively. The
geometric represuntation of the components in Eq. (Al) can be
seen by expressing the transformation in multiple angles using
the relationships

sind @ = 1/4(3 sin 6 - sin 38)

cos 6 sin2 )

1/4(cos 6 - cos 30)
2 (A13)
cos 0 sin 8 = 1/4(sin 6 + sin 30)

cos3 @ = 1/4(3 cos 6 + cos 30)
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B = T = [ 7
t R 0 R 0 cos 6
51123 4 3
Si113 0 R5 0 R3 sin 8
85223 R5 0 -R3 0 cos 36 (A14)
85213 = 0 R4 0 -R3 sin 36l
b ==
]
S2312 ¢ ~Rg 0  -R4
S! -R 0 R 0
1312 6 3
" i " o
whare
_ 1/2 e 1/2 _ )1/2

R, = 1/4 (116)1/2

The geometric representation of equation (Al4) is similar to the
one constructed for Eq.(51) and is shown in Fig. 4. In this
construction, II,, II,, II5, II6 are assumed to be positive. It
can be noted that in the principal direction (6 = 0),

s = 0 indicating that the material is symmetric

1113 = S2213 = S2312
to the 2-3 plane, i.e.,a mono-clinic material with X1 as the

principal axis. It is important to note that since the transformation

of Sijkl in 2-space (Eq. 41) is not coupled to the transformations
of the Sijkl components in 3-space (Egs.Al, A2 and A3), the
invariants Eqs. (37-40) and geometric representation (Fig. 3)
remain the same for 3-space. Previous remarks on the applications
of the invariants and geometric representation for 2-space are

also applicable for their counterparts in 3-space.
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